A Parameters Optimization of Synergetic Neural Network Based on Differential Evolution Algorithm
نویسندگان
چکیده
Synergetic neural network (SNN) is a top-down network to explain the phase transition and self-organization in non-equilibrium system. The network parameters have a crucial impact on the recognition performance of synergetic neural network. At present, there is no good way to control and adjust the network parameters. To solve these problems, an improved parameters optimization algorithm based on differential evolution algorithm is proposed and implemented in this paper. There are two main works in this paper. Firstly, a semantic analysis model based on synergetic neural network is presented. Secondly, differential evolution algorithm is used to search the global optimum of network parameters in the corresponding parameter space. The experiments showed that the optimization algorithm can improve the synergetic recognition performance.
منابع مشابه
A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملOPTIMAL DESIGN OF WATER DISTRIBUTION SYSTEM USING CENTRAL FORCE OPTIMIZATION AND DIFFERENTIAL EVOLUTION
For any agency dealing with the design of the water distribution network, an economic design will be an objective. In this research, Central Force Optimization (CFO) and Differential Evolution (DE) algorithm were used to optimize Ismail Abad water Distribution network. Optimization of the network has been evaluated by developing an optimization model based on CFO and DE algorithm in MATLAB and ...
متن کاملOptimization of Functionally Graded Beams Resting on Elastic Foundations
In this study, two goals are followed. First, by means of the Generalized Differential Quadrature (GDQ) method, parametric analysis on the vibration characteristics of three-parameter Functionally Graded (FG) beams on variable elastic foundations is studied. These parameters include (a) three parameters of power-law distribution, (b) variable Winkler foundation modulus, (c) two-parameter elasti...
متن کاملOptimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...
متن کاملImage Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کامل